Please wait while we gather all the unique runs for this blueprint.
Please wait while we gather all the unique runs for this blueprint.
Please wait while we find all executions for this version.
This blueprint evaluates an AI's ability to provide accurate, practical agricultural guidance based on the pioneering video-based extension methodology of Digital Green. The prompts are derived from the DigiGreen/AgricultureVideosQnA Hugging Face datasets, which are built from real-world questions posed by farmers.
Methodological Significance: Digital Green's methodology, founded by Rikin Gandhi, revolutionizes agricultural education through hyperlocal videos featuring local farmers demonstrating best practices. Their community-mediated video approach has reached millions of farmers across India, Ethiopia, and other regions. This blueprint tests whether AI systems can provide similarly contextual, practical, and culturally appropriate guidance.
What This Blueprint Tests: The evaluation covers essential farming knowledge spanning seed treatment, pest management, cultivation techniques, and more. Each prompt is paired with citations to actual educational videos from Digital Green's library, representing real-world agricultural challenges.
Geographic and Cultural Context: This blueprint emphasizes Global South agricultural contexts, particularly Indian farming systems, reflecting Digital Green's primary operational areas. The questions address challenges in subsistence and small-scale commercial farming, including resource constraints and climate adaptation.
Key Agricultural Domains Covered:
Evaluation Approach: Each response is evaluated against detailed rubric points extracted directly from ideal responses, focusing on technical accuracy, practical applicability, safety considerations, and contextual appropriateness for resource-constrained farming environments.
Showing all recorded executions for Run Label 4f224f95f73b80d5.